Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9640, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671026

RESUMO

Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2% biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi protected Synechocystis against the development of chlorosis. Transcriptomic analysis suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The CuSO4 stress can also mediate Synechocystis-fungi flocculation but at a lower flocculation efficiency than that caused by EM. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.


Assuntos
Eritromicina , Floculação , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Eritromicina/farmacologia , Biomassa , Técnicas de Cocultura , Fungos/metabolismo , Fungos/genética
2.
Bioresour Technol ; 398: 130509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452949

RESUMO

This study investigates nutrient recovery from synthetic municipal wastewater using co-immobilized cultures of Chlorella vulgaris TISTR 8580 (CV) and plant growth-promoting bacteria, Bacillus subtilis TISTR 1415 (BS) as living biofilters for a subsequent biofertilizer activity. The optimal condition for nutrient recovery was at the 1:1 ratio of CV/BS using mixed guar gum/carrageenan (GG/CG) binders. After 7-day wastewater treatment, the living biofilters removed 86.7 ± 0.5% of ammonium and 99.3 ± 0.3% of phosphates and were tested subsequently as biofertilizers for 20 days to grow selected plants. The highest optimal biomass and chlorophyll a content was 2 ± 0.3 g (CV/BS 3:1) and 12.4 ± 0.7 µg/g (CV/BS 1:1) from cucumber respectively, however, the close-to-neutral pH (8.0 ± 0.3) was observed from sunflower using CV/BS 1:1 living biofilters. Conclusively, the designed living biofilters exhibit the potential to recover nutrients from wastewater and be used as biofertilizers for circular agriculture.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Técnicas de Cocultura , Clorofila A , Bactérias , Nutrientes , Biomassa , Nitrogênio
3.
J Biotechnol ; 360: 198-210, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36414126

RESUMO

Biological wastewater treatment is a promising and environmentally friendly method that utilises living microorganisms to remediate water and enable recovery or conversion of contaminants into valuable products. For many decades, microalgae and cyanobacteria, photosynthetic living microorganisms, have been explored extensively for wastewater bioremediation. They can be used for recovering valuable nutrients such as nitrogen and phosphorous from secondary effluents and capable of transforming those nutrients into marketable products such as biofuels, biofertilisers, nutraceutical, and pigments for promoting a Bio-Circular Green economy. In recent years, there has been a shift towards mixing compatible microalgae with bacteria, which is inspired by their natural symbiotic relationships to increase nitrogen and phosphorus recoveries. With this enhanced bioremediation, recovery of polluted wastes can be intensified and higher biomass quality (with high nutrient density) can be achieved. This review focuses on the state-of-the-art of mixed microalgal-bacterial cultivating systems. A comprehensive comparison of existing studies that used Chlorella species as microalgae in various mixed microalgal-bacterial cultivating systems (suspension, biofilm, and immobilisation) for nitrogen and phosphorus recoveries from wastewater is conducted. Key technical challenges such as balancing microalgae and bacteria species, pH regulation, light distribution, biomass harvesting, and biomass conversion are also discussed. From the data comparisons among different cultivation systems, it has been suggested that immobilisation appears to require less amount of operational light compared to the suspended and biofilm-based systems for similar nitrogen and phosphorus removal efficiencies.


Assuntos
Chlorella , Microalgas , Fósforo , Nitrogênio , Águas Residuárias , Bactérias
4.
Sci Rep ; 12(1): 18735, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333406

RESUMO

Carbon capture and storage is required to meet Paris Agreement targets. Photosynthesis is nature's carbon capture technology. Drawing inspiration from lichen, we engineered 3D photosynthetic cyanobacterial biocomposites (i.e., lichen mimics) using acrylic latex polymers applied to loofah sponge. Biocomposites had CO2 uptake rates of 1.57 ± 0.08 g CO2 g-1biomass d-1. Uptake rates were based on the dry biomass at the start of the trial and incorporate the CO2 used to grow new biomass as well as that contained in storage compounds such as carbohydrates. These uptake rates represent 14-20-fold improvements over suspension controls, potentially scaling to capture 570 tCO2 t-1biomass yr-1, with an equivalent land consumption of 5.5-8.17 × 106 ha, delivering annualized CO2 removal of 8-12 GtCO2, compared with 0.4-1.2 × 109 ha for forestry-based bioenergy with carbon capture and storage. The biocomposites remained functional for 12 weeks without additional nutrient or water supplementation, whereupon experiments were terminated. Engineered and optimized cyanobacteria biocomposites have potential for sustainable scalable deployment as part of humanity's multifaceted technological stand against climate change, offering enhanced CO2 removal with low water, nutrient, and land use penalties.


Assuntos
Carbono , Cianobactérias , Dióxido de Carbono , Fotossíntese , Sequestro de Carbono , Biomassa , Água
5.
Biomater Sci ; 10(18): 5054-5080, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35876134

RESUMO

Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.


Assuntos
Órgãos Artificiais , Bioimpressão , Materiais Biocompatíveis , Bioimpressão/métodos , Impressão Tridimensional , Tecnologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...